Problem Statement
You are given a permutation P1…PN of the set {1,2,…,N.}
You can apply the following operation to this permutation, any number of times (possibly zero):
- Choose two indices i,j(1≤i≤j≤N), such thatK≤ j−i and |Pi−Pj|=1. Then, swap the values of Pi and Pj.
Among all permutations that can be obtained by applying this operation to the given permutation, find the lexicographically smallest one.
Constraints
- 2≤N≤500,000
- 1≤K≤N−1
- P is a permutation of the set {1,2, …, N}.
Input
The input is given from Standard Input in the following format:
1 | N K |
Output
Print the lexicographically smallest permutation that can be obtained.
Sample Input 1
1 | 4 2 |
Sample Output 1
1 | 2 |
One possible way to obtain the lexicographically smallest permutation is shown below:
Sample Output 2
1 | 1 |
Sample Input 3
1 | 8 3 |
Sample Output 3
1 | 1 |
题解
读入的 Pi 表示第 i个位置上的数为 Pi
然后设 Qi表示i这个数在排列中的位置为Qi
要使交换后 P 数组字典序最小,就是使交换后的 Q 数组字典序最小.(因为使尽量小的数在尽量靠前的地方,就可以使整个排列尽量小)
求出最小字典序后,在i前面的数只有比i 小和比 i大 |i−j|>=K
所以对于|i−j|<K的情况,Pi和Pj的相对位置不会变,所以连边跑拓扑排序,求最小的拓扑序
每个点只需要连向左右最小的满足条件的数即可
1 |
|